
Basalt Fiber
Market: Supply
Trends, Demand
Projections, and
Competitive
Landscape
(2025-2030)

CONTENTS

Introduction	03
Executive Summary	04-07
Chairman's Message	08
Market Segments	09
CBF Market Growth and Demand Drivers	10-12
Top Basalt Fabric Applications	13
Growth of Basalt Geogrids & General Geogrids	14-15
Basalt Fiber Applications in Automotive	16
Growth of Wind Energy Market Share	17-18
Key Markets and Demand Drivers	19-20
Basalt Fiber Market Dynamics in Asia Pacific	21-22
MEA Growth Market Drivers	23
Growth Drivers and Opportunities	24-25
Basalt Fiber Fabric Advantages	26-27
Cost Reduction for Basalt Fabrics	28-30
Challenges Market Realities for Fabrics	
and Geogrids Development	31-34
Strategic Demand Projections 2025-2035	35-36
Market Volume Projections by Application in Tons	37-51

I. Basalt Fiber The Material of Tomorrow.

The story of basalt fiber is one of material science's most compelling narratives - the transformation of volcanic rock into an advanced engineering material, which is today reshaping industries from construction to aerospace.

In 2025, with the global basalt fiber market poised to reach approximately USD540-590 million by 2030, the material also reflects the intersection of performance, sustainability and innovation that modern industry demands.

Basalt fiber is derived from carefully selected volcanic rock deposits, transformed through advanced engineering processes into filaments that combine remarkable strength with processing versatility.

This journey from natural resource to high-performance fiber underlines how technological advancement can enhance rather than compromise environmental sustainability.

The resulting material offers an impressive tensile strength of up to 4,800 MPa and thermal stability at temperatures reaching 800°C, positioning it uniquely in the spectrum of advanced materials.

The evolution of basalt fiber technology traces back to the mid-20th century, with early development efforts in the erstwhile USSR, focusing primarily on military applications.

The true potential of this material remained largely untapped until recent decades, when advances in manufacturing technology and growing environmental consciousness created a new opportunities.

The modern production process, involving the melting of basalt rock at temperatures between 1,400°C and 1,600°C and extrusion through specialized platinum-rhodium bushings is a milestone in modern materials engineering.

What sets basalt fiber apart in today >s material landscape is its versatility.
Unlike many advanced materials that excel in narrow applications, basalt fiber demonstrates exceptional performance across a broad spectrum of uses.

In construction, it offers a transformational alternative to traditional steel reinforcement, with BFRP rebars providing superior corrosion resistance and potentially extending infrastructure lifespan by decades.

The automotive industry has embraced basalt fiber composites as a key enabler of vehicle lightweighting strategies, particularly crucial in the emerging electric

Executive Summary

The global basalt fiber market is expected to grow significantly, with fabric and geogrid applications being the primary growth drivers while raw fiber production currently faces structural overcapacity.

The market, valued at approximately USD 398.2 million in 2024, is projected to reach USD 750.3 million by 2033, with base case scenarios indicating USD 590 million by 2030 (CAGR 9.8%).

Value-added products show strong growth potential, with basalt fabrics projected to grow from USD 200 million (2023) to USD 450 million (2032) at 9.2% CAGR, while basalt geogrids, starting at USD 411.7 million (2025), maintain a 10.2% CAGR through 2033. The combined fabric and geogrid value is expected to represent 60-70% of total market value by 2030.

Market volume projections indicate growth from 62.42 kilotons in 2025 to 105.80 kilotons by 2030, representing an 11.13% CAGR. Fabric applications are expected to grow from 35,000-40,000 tons (2025) to 85,000-95,000 tons (2035), while geogrid applications will expand from 25,000-30,000 tons (2025) to 68.000-75,000 tons (2035).

Regional distribution shows Asia Pacific maintaining 50-51% of global volume by 2030, followed by North America (25-30%), Europe (12-15%), Middle East & Africa (8-10%), and Latin America (3-5%).

The key market drivers are:

Infrastructure development: Global infrastructure investment, particularly in developing Asia, requires USD 1.7 trillion annually through 2030. Major programs include China's Belt and Road Initiative, India's USD

1.4 trillion National Infrastructure Pipeline, and Middle East mega-projects. Furthermore, highway construction programs require 200-300 million square meters of geogrids annually

Electric vehicle manufacturing: Global EV production is projected to reach 30+ million units by 2030, with each vehicle requiring 15-25 kg of advanced composite materials, creating demand for 150-240 million square meters of specialized fabrics annually. IN addition, the applications include battery enclosures, structural components, and thermal management systems.

Wind energy expansion: the global offshore capacity projected to reach 380 GW by 2030, creating demand for 12,000-15,000 tons of basalt fiber annually. It also requires 15-20 million square meters of specialized fabrics for turbine blades, in addition to applications in blade manufacturing, nacelle components, and retrofitting services.

Challenges:

The basalt fiber industry faces production and supply chain challenges despite its promising growth trajectory. While basalt rock is geologically abundant, deposits suitable for high-quality fiber production remain limited and geographically concentrated.

The manufacturing process is energy-intensive, with energy costs representing 40-50% of total production costs. Additionally, establishing meaningful production scale requires substantial capital investment of USD 50-100+ million, while specialized equipment and processes create operational challenges.

Competition from established materials is another significant hurdle. Steel reinforcement maintains market dominance through lower initial costs and universal familiarity among engineers and contractors. Fiberglass products command 30-40% lower costs while offering similar performance in many applications. The industry also faces limited standardization and regulatory frameworks, while basalt fiber products typically carry a 20-50% price premium over traditional materials.

A focus on value-added manufacturing
The industry's strategic growth centers around a critical choice between raw fiber commodity production and value-added manufacturing.
The raw fiber segment faces challenging fundamentals, with global capacity utilization at only 16%, significant overcapacity creating price pressure, limited differentiation potential, and commodity market dynamics.
However, value-added opportunities present a viable alternative, offering premium pricing in specialized applications, higher margins in fabric and geogrid segments, technical differentiation potential, and direct customer relationships.

Regional developments show distinct patterns across major markets. In Asia Pacific, China's infrastructure programs are driving massive geogrid demand, while India's Smart Cities Mission creates significant opportunities for both fabrics and geogrids, and Japan focuses on seismic retrofitting applications.

North America's market is shaped by infrastructure renewal programs, expanding EV manufacturing, and coastal protection projects. The Middle East and Africa region is highlighted by mega-projects like NEOM, requiring 50-100 million square meters of geogrids, alongside extreme environment applications and strategic manufacturing development.

The role of ABFC

Arab Basalt Fibre Company (ABFC) represents the industry's strategic transformation through its state-of-the-art USD 76 million facility in Fujairah, UAE. The facility currently maintains an annual capacity of 5,000 tonnes of basalt fiber and 7,000 tonnes of BFRP rebar production.

ABFC's strategic vision includes planned expansion into fabric and geogrid manufacturing, with targets of 2-3 million square meters of fabric and 5-8 million square meters of geogrid production capacity. The company leverages significant strategic advantages in energy costs, raw material access, and logistics through its UAE location.

The basalt fiber industry's future lies in valueadded applications rather than raw fiber production. Success requires substantial investment in downstream processing capabilities and development of applicationspecific solutions.

Companies must also focus on integrating smart technologies in fabrics and geogrids while building direct relationships with endusers across automotive, infrastructure, and renewable energy sectors. They must choose between declining raw fiber commodity business and growing fabric/geogrid opportunities. With raw fiber facing 16% global capacity utilization and price pressure, and fabric and geogrid segments showing 9-10% growth with premium pricing, the transformation is critical for the industry.

The market's evolution will favor companies that focus on downstream processing investments, particularly in specialized fabrics for EV applications, smart geogrids for infrastructure and advanced materials for renewable energy systems. The industry's future is in creating intelligent, application-specific solutions that solve engineering challenges across multiple sectors.

Global Research Report 2025

The material's impact on renewable energy infrastructure has been equally profound. Wind energy manufacturers increasingly incorporate basalt fiber composites into turbine blade design, leveraging its fatigue resistance and strength-to-weight ratio to create larger, more efficient blades.

This application alone demonstrates how basalt fiber contributes to sustainable energy production while itself being an environmentally conscious material choice.

In aerospace and defense applications, basalt fiber's unique combination of properties - from high strength and thermal stability to excellent fire resistance - has opened new possibilities in aircraft component design and protective systems.

The marine industry has found in basalt fiber a material particularly well-suited to harsh saltwater environments, while industrial applications benefit from its chemical resistance and thermal stability.

Perhaps most significantly, basalt fiber's emergence coincides with

a global pivot toward sustainable manufacturing and construction practices. As industries worldwide focus on reducing carbon footprints while improving performance, basalt fiber offers a compelling solution. Its production requires significantly less energy than carbon fiber, and its raw material - basalt rock - is abundantly available in many regions globally. Furthermore, the material's durability and resistance to environmental degradation mean longer service life and reduced replacement needs, contributing to overall lifecycle sustainability.

The current market dynamics reflect this growing recognition of basalt fiber's potential. While traditional markets in Russia and China continue to drive significant production, new manufacturing centers are emerging globally.

The establishment of major production facilities in regions like North America (Mafic USA) and the Middle East (Arab Basalt Fibre Company) signals the industry's maturation and growing global reach. These developments are particularly timely as industries seek materials that can meet increasingly stringent

In 2024, global basalt fiber production capacity reached 500,000 tons annually, yet actual output was only about 80,000 tons at an utilization rate of just 16%. This underutilization extends beyond raw fiber production to downstream applications, including pultrusion for rebars, where overcapacity of 40-50% is evident. This structural imbalance indicates that the industry's challenge is not supply constraints but demand generation and market development.

Today, Fiberglass (GFRP) dominates 85-90% of the composite reinforcement market, offering what industry stakeholders describe as the "optimum balance between performance and price." This established position, combined with universal familiarity among engineers and contractors, creates a barrier for basalt fiber adoption in commodity applications.

The real market opportunity lies in specialized applications where basalt fiber's unique properties provide indispensable value. Basalt fiber fabrics, with their superior fire resistance and thermal stability, are gaining traction in automotive and aerospace applications. Similarly, basalt geogrids are finding acceptance in infrastructure projects requiring exceptional durability and chemical resistance.

As we look toward the 2025-2030 period, our research shows that basalt fiber is poised for wider adoption across multiple sectors. The increasing adoption of fibres and geo grids in mainstream engineering material reflects both technological advancement and changing industrial priorities.

With growing emphasis on sustainable development, infrastructure resilience, and advanced manufacturing, basalt fiber's role in shaping the future of materials engineering appears increasingly significant.

Message from the Chairman

As Chairman of Arab Basalt Fibre Company (ABFC), I am pleased to present this comprehensive analysis of the global basalt fiber market for 2025-2030. Today, we witness unprecedented demand for sustainable, high-performance materials across multiple sectors.

The basalt fiber industry is at the intersection of several transformative trends: the global push for sustainable construction, the automotive sector's drive toward lightweight materials, and the growing adoption of advanced composites in renewable energy.

Our analysis projects the market to reach approximately USD540-590 million by 2030, growing at a CAGR of 10-12% from 2025. This growth is derived not only through the increasing application of basalt, but also through deeper market penetration as awareness of its unique properties grow.

At ABFC, we are proud to be at the forefront of this industry's development in the MENA region. Our state-of-the-art facility in Fujairah, UAE, with an annual capacity of 5,000 tonnes of basalt fibers and 7,000 tonnes of basalt rebars, is focused on meeting the rising global demand.

We are particularly excited about our role in supporting sustainable construction practices as our BFRP rebars offer a 74% lower carbon footprint compared to steel alternatives while providing superior durability and corrosion resistance.

Our comprehensive market analysis reveals that while raw basalt fiber production capacity globally exceeds demand by a factor of six, the real growth opportunity lies in downstream applications.

ABFC's strategic advantage lies not merely in our production capacity, but in our ability to develop value-added products that serve specific market needs. Our location in Fujairah, UAE, provides unique advantages such as access to high-quality basalt deposits, competitive energy costs (critical given energy represents 40-50% of production costs), strategic logistics position serving Asia-Africa-Europe markets, and the benefits of egional supply chain diversification.

ABFC remains committed to developing basalt fiber solutions that provide genuine value to our customers. This includes advancing fabric technologies for automotive lightweighting, developing specialized geogrids for harsh environments, and creating application-specific solutions that leverage basalt fiber's unique properties.

The future of basalt fiber lies not in replacing existing materials universally, but in enabling applications that were previously impossible or economically unfeasible. This strategic focus will drive sustainable growth and market development. As we look toward 2030, ABFC remains committed to innovation, quality, and sustainable development in this dynamic industry.

H.E. ENG. MOHAMMED AHMED AL-SHEHHI Chairman Arab Basalt Fibre Company

3. Market segments: Analysis and growth projections.

A. Segmentation by form

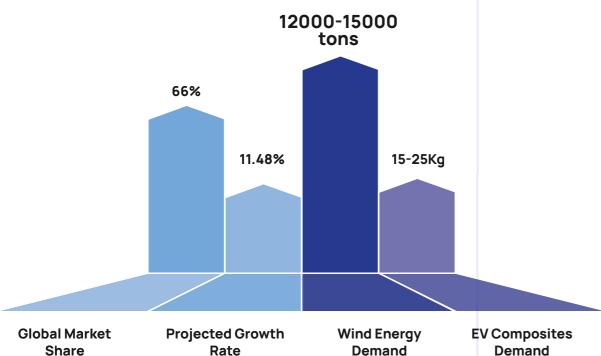
The global basalt fiber market's structure reveals a critical insight about where real value and growth opportunities lie. While raw fiber production faces significant overcapacity, the transformation of these fibers into application-specific products drives actual market demand and pricing power.

The foundation for value-added Products Continuous basalt fiber (CBF) commands approximately 65-67% of the global market share as of 2024, establishing itself as the predominant form due to its superior mechanical properties and versatility in high-performance applications.

However, this dominance is misleading when viewed purely as a raw material metric. The real significance lies in CBF's role as the essential feedstock for high-value downstream products including fabrics, geogrids, and composite structures.

Our study reveals that while raw CBF production faces significant overcapacity with only 16% global utilization, its transformation into value-added products drives actual market

demand and pricing power. This disconnect between raw material capacity and finished product demand explains why successful basalt fiber companies focus on downstream processing rather than raw fiber production expansion.


CBF's market dominance is expected to strengthen further, with projections indicating a compound annual growth rate of 11.48% through 2032. However, this growth rate primarily reflects demand for processed products rather than raw fiber consumption.

The actual growth drivers include fabric manufacturing for automotive and aerospace applications, geogrid production for infrastructure projects, and composite manufacturing utilizing CBF in filament winding and pultrusion for specialized applications.

This robust growth is driven by increasing demand in critical applications where CBF's exceptional tensile strength of 4,800 MPa provides several advantages. The wind energy sector requires 12,000-15,000 tons annually by 2030 for turbine blade manufacturing, where CBF's fatigue resistance and saltwater corrosion resistance are indispensable. EV manufacturers demand 15-25 kg of advanced composites per vehicle, with CBF offering costeffective performance at 40-50% of carbon fiber cost.

Aerospace applications value CBF's electromagnetic neutrality combined with high strength, while infrastructure mega-projects in Asia-Pacific and Middle East require materials that can withstand extreme environmental conditions.

CBF Market Growth and Demand Drivers

Share

Predominant form due to superior properties Rate

Expected growth through 2032

Demand

Composites per vehicle for EV manufacturing

However, this growth is concentrated in premium applications rather than Concrete commodity, with strongest expansion in harsh environment regions including the Middle East, coastal areas, and industrial zones. Volume growth is projected from 22,000-25,000 tons in 2025 to 30,000-35,000 tons by 2030, with new applications in 3D printing filaments and specialized composites driving incremental demand.

Annual requirement for

turbine blaldes

23500 2025 32500 2030 Volume

Projected Growth of Chopped Basalt Fiber Market

B. Product type segmentation

The market's product segmentation reveals a network of applications and value propositions, showing where actual value creation and profit margins exist within the basalt fiber ecosystem.

Basalt Roving - A pillar in manufacturing

Basalt roving emerges as the market leader, with 40% of the product segment. This dominance stems from its crucial role in continuous processing methods such as filament winding and pultrusion, particularly in manufacturing pipes, tanks, and wind energy components. The versatility of rovings in both wet-layup and prepreg applications has established them as the backbone of the basalt fiber industry.

However, roving's market position reflects both opportunity and challenge. While it serves as the industrial foundation for value-added manufacturing, raw roving faces commodity pricing pressures due to overcapacity.

(tons)

The real value creation occurs in downstream processing: converting roving into BFRP rebars, profiles, and structural elements through pultrusion; producing pressure vessels, pipes, and storage tanks for chemical industry through filament winding; processing roving into high-value textile products for automotive and aerospace through fabric weaving; and creating specialized components for wind energy and marine applications.

The economic reality shows margin pressure at the raw roving level, with profits increasingly concentrated in downstream processing and application development.

Premium roving commands higher prices through consistent diameter control and surface treatment, while successful companies vertically integrate from roving production to finished products to capture higher margins throughout the value chain.

Basalt Fiber Reinforced Polymer (BFRP) Rebar: Market realities vs. projections

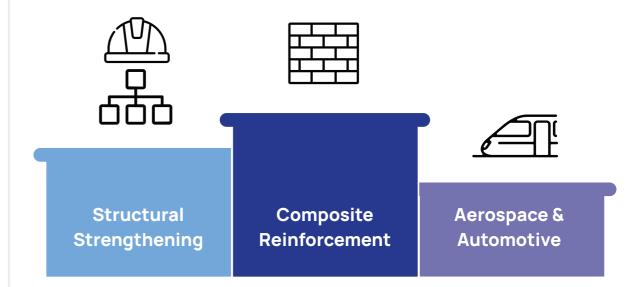
Basalt Fiber Reinforced Polymer (BFRP) rebar is the second-largest product segment, holding 25% of the market. This product category has witnessed remarkable growth, projected at a CAGR of 11.5% through 2030, driven by increasing recognition of its superior corrosion resistance and longer service life compared to traditional steel reinforcement.

However, BFRP rebar's market reality requires careful contextualization. The absolute market size remains modest at USD 19.40 million in 2022, projected to reach USD 120.50 million by 2030, representing growth from a small base despite high CAGR. The segment faces significant challenges including pultrusion overcapacity of 40-50%, competitive pressure from fiberglass rebar which offers "optimum balance of performance and price" for most applications, and economic barriers from its 20-50% cost premium over steel.

The adoption of BFRP rebar has been particularly strong in aggressive environments such as coastal structures and chemical plants, where its durability provides significant lifecycle cost advantages. consistent mechanical properties and Successful applications include marine infrastructure where saltwater environments justify premium pricing, chemical plants requiring acid-resistant applications, seismic retrofit projects leveraging flexibility and strength advantages, and precast components benefiting from lightweight

Market development faces challenges including limited contractor education on handling and installation techniques, lack of widespread building codes and engineering quidelines, difficulty demonstrating lifecycle value to budget-constrained projects, and less developed distribution networks compared to steel or fiberglass alternatives.

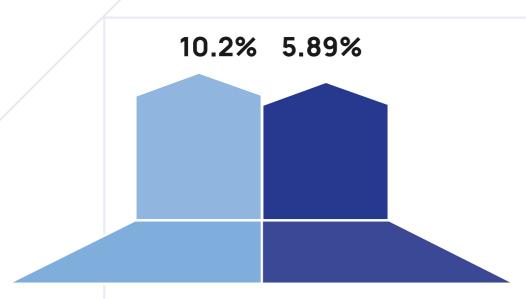
Basalt Fabrics - The highgrowth value creator


Basalt fabrics, commanding 20% of the product market, have established a strong presence in composite reinforcement and structural strengthening applications. These represent the most dynamic and profitable segment of the basalt fiber market, with disproportionate growth potential relative to their current share.

These offer exceptional versatility in laminate construction and are increasingly favored in aerospace and automotive applications where precise fiber orientation and consistent properties are crucial. Fabrics command 200-300% higher prices than raw fiber due to processing complexity, with tailored products for automotive, aerospace, and construction markets creating technical differentiation through weave patterns, surface treatments, and hybrid combinations.

The technical advantages driving fabric doption include precise fiber orientation control for structural optimization, uniform surface consistency for resin absorption and bonding, handling properties providing drapability and conformability for complex shapes, and quality assurance delivering dimensional stability. Manufacturing advantages include processing efficiency with faster lay-up and curing, waste reduction through optimized material utilization, quality control through standardized products, and scalability via automated manufacturing processes

Top Basalt Fabric Applications


Specialized Products -Geogrids and emerging applications

The remaining 15% of the market covers specialized products including chopped strands, yarns, and meshes, each serving specific technical requirements across various industries. However, this segment includes some of the highest-growth and most profitable applications, particularly basalt geogrids.

Basalt geogrids represent a high-growth infrastructure enabler with market size of USD 411.7 million in 2025 and 10.2% CAGR through 2033. Leading manufacturers produce 10 million square meters annually, with growth potential outpacing general geogrid market growth of 5.89% CAGR. Applications expand across road construction, soil stabilization, and underground infrastructure.

Emerging high-value applications include 3D printing filaments with basalt-reinforced materials for additive manufacturing, smart textiles with sensor-integrated fabrics for structural health monitoring, hybrid composites combining basalt-carbon and basalt-glass for optimized performance, and specialty meshes for fire-resistant and chemical-resistant applications.

Growth of Basalt Geogrids and General Geogrids

Basalt Geogrids High-growth infrastructure enabler

C. Application/industry segmentation

The application segmentation show the fundamental dynamics driving basalt fiber demand and highlights where growth opportunities exist versus market constraints.

Construction and Infrastructure Largest but constrained market

The construction and infrastructure sector is the largest end-user of basalt fiber products, commanding 35-40% of the market and valued at USD 89 million in 2024.

This sector's dominance reflects the material's transformative impact on construction practices, particularly through BFRP rebar adoption and structural strengthening applications. The material's

General Geogrids

Standard market growth rate

success in this sector owes to its ability to address critical challenges in infrastructure durability and maintenance cost reduction.

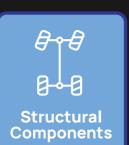
However, the construction sector's relationship with basalt fiber reveals both opportunity and constraint. The modest absolute market size of USD 89 million despite percentage share being high reflects competition from cost-effective fiberglass alternatives, with growth primarily concentrated in harsh environment regions requiring specialized performance.

The sector faces significant challenges including the 20-50% price premium over steel that limits broad adoption, limited design standards and contractor familiarity creating technical barriers, and cost sensitivity in budget-constrained projects.

Infrastructure aging drives demand, with USD 276 billion annual corrosion costs in the US alone creating demand for alternatives. Sustainability mandates and green building requirements favor durable materials, while successful applications concentrate in coastal construction, chemical facilities, seismic retrofitting, and precast manufacturing where lifecycle value justifies premium pricing.

Automotive and Transportation Transformational impact

The automotive and transportation sector has emerged as the fastest-growing application segment, with a projected CAGR of 12.3% through 2030. This exceptional growth is driven by the industry's aggressive lightweighting initiatives and the rapid expansion of electric vehicle production. Basalt fiber's role in this sector spans from structural components to specialized applications such as battery enclosures,


where its combination of light weight and thermal stability provides unique advantages.

The electric vehicle revolution creates strong demand scale, with 30+ million EVs annually by 2030, each requiring 15-25 kg of advanced composites. Weight reduction imperatives demand 20-30% weight reduction for acceptable EV range, while fire safety requirements for battery enclosures require thermal stability and flame resistance. Basalt fiber offers cost optimization at 40-50% of carbon fiber cost with 80-90% performance.

Strategic applications include battery enclosures generating 5,000-8,000 tons annual demand by 2030 with premium pricing justified by safety requirements, structural components requiring 8,000-12,000 tons annually for chassis and body panels, thermal management applications in power electronics, and interior components providing fire-resistant and lightweight cabin.

Basalt Fiber Applications in Automotive

Thermal Management

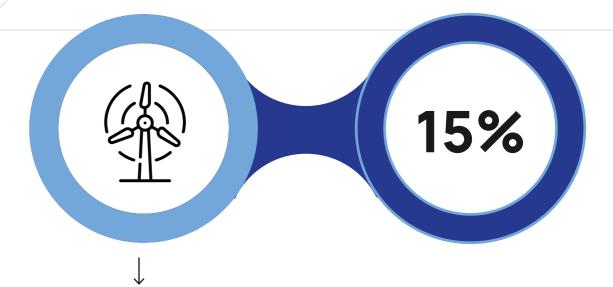
Not specified

5,000-8000 tons 8,000-12000 tons

Not specified

Demand by 20230

Wind Energy - The offshore opportunity


Wind energy applications currently represent 15% of the market, with projections indicating growth to 25% by 2032. This sector's expansion is particularly noteworthy as wind turbine manufacturers increasingly recognize basalt fiber's superior fatigue resistance and strength-to-weight ratio in blade manufacturing. The material's performance in offshore installations, where corrosion resistance is paramount, has further strengthened its position in this growing market.

The offshore wind expansion creates significant market opportunities with global offshore capacity projected to reach 380 GW by 2030, generating demand for 12,000-15,000 tons of basalt fiber annually in turbine blade applications.

Turbine size scaling toward 15+ MW units requires advanced materials for blade lengths exceeding 100 meters, where basalt fiber's fatigue resistance becomes critical for dynamic loading conditions.

Growth of Wind Energy Market Share

Current Wind energy's current market share

Offshore installations face extreme environmental challenges including saltwater corrosion, constant wind and wave action, and temperature cycling, where basalt fiber's corrosion resistance provides 20-30 year service life advantages over conventional materials. The material's electromagnetic neutrality is valuable for turbine control systems, while its strength-to-weight ratio enables larger, more efficient blade designs.

Blade retrofitting represents an emerging market for extending the service life of existing wind turbine installations, particularly important as first-generation offshore wind farms approach mid-life maintenance periods. The combination of proven performance in marine environments and cost-effectiveness compared to carbon fiber alternatives positions basalt fiber favorably for continued wind energy market expansion.

Aerospace and Defense: Premium applications

The aerospace and defense sector, while comprising 12% of current market share, demonstrates consistent growth with a CAGR of 10.8%. This sector's adoption of basalt fiber is driven by demanding applications in aircraft interiors, structural components, and specialized ballistic protection systems, where the material's unique combination of light weight and high performance justifies its use.

Commercial aviation recovery postpandemic is driving aircraft production increases, creating demand for lightweight interior components, structural reinforcement materials, and fire-resistant cabin elements. Defense applications show growing interest in basalt fiber for armor systems, ballistic protection, and specialized military vehicle components where electromagnetic neutrality and fire resistance provide tactical advantages.

Space applications represent an emerging opportunity in satellite components and launch vehicle structures, where basalt fiber's thermal stability and light weight are valuable for extreme environment performance. The material's resistance to atomic oxygen and radiation makes it suitable for long-duration space missions.

Marine Applications - Specialized growth

Marine applications, currently at 8% market share, show promising growth potential, with projections indicating a market value of USD 97.6 million by 2034. This sector's growth is driven by increasing recognition of basalt fiber's exceptional resistance to saltwater corrosion and its durability in marine environments, making it particularly valuable in hull reinforcement and deck components.

Offshore platform construction requires materials capable of withstanding continuous saltwater exposure, dynamic wave loading, and temperature cycling. Basalt fiber's 75-100 year service life in marine environments provides

significant advantages over steel alternatives that require frequent maintenance and replacement.

Shipbuilding applications include hull reinforcement, deck structures, and specialized components for naval and commercial vessels. The material's electromagnetic neutrality is particularly valuable for naval applications where radar signature management is important.

Coastal infrastructure including seawalls, breakwaters, and harbor structures increasingly specify basalt fiber materials for their durability and resistance to environmental degradation. The combination of strength, corrosion resistance, and cost-effectiveness compared to exotic alloys makes basalt fiber an attractive solution for marine construction.

4. Key Markets and Demand Drivers

Asia Pacific: The market leader

The Asia Pacific region dominates the global basalt fiber market, commanding approximately 50-51% of total market share as of 2024. This is expected to strengthen further, with the region set to maintain a robust CAGR of 11.33-13.3% through 2030. However, this dominance masks important regional dynamics and supply chain considerations that affect global market development.

China: Shifting priorities

China is the cornerstone of the Asia Pacific market, driven by massive infrastructure investments under the Belt and Road Initiative

(BRI) and urbanization programs. The application of basalt fiber is particularly crucial as the nation's annual direct economic loss from concrete corrosion is estimated to be more than USD 62 billion, representing 4.0% of total infrastructure investment according to the Ministry of Housing and Urban-Rural Development. This has accelerated adoption of corrosion-resistant basalt fiber solutions.

China's dominance extends beyond consumption to production, accounting for over 60% of global basalt fiber manufacturing capacity at 300,000 tons annually, though actual output remains at only 50,000 tons (16.7% utilization). This production concentration creates both

opportunities and risks for global supply chains. The country's growing domestic demand is increasingly absorbing local production, reducing export availability and creating opportunities for regional suppliers.

The Belt and Road Initiative continues to drive international demand for Chinese basalt fiber products, particularly in infrastructure projects across Central Asia, Southeast Asia, and Africa. However, geopolitical tensions and trade considerations are encouraging participating countries to develop alternative supply sources, creating opportunities for producers in other regions.

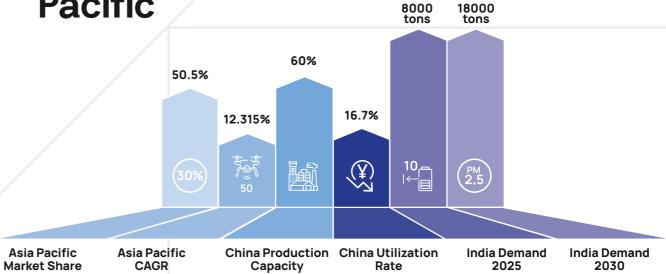
India: Infrastructure transformation and growing opportunity

Another strong market is India. The country's infrastructure transformation presents compelling opportunities. The country's National Infrastructure Pipeline targets USD 1.4 trillion in investments, with significant allocations for roads, railways, and urban development. India's Smart Cities Mission and the Bharatmala Pariyojana highway development program specifically emphasize durable, sustainable materials, creating substantial demand for BFRP rebars and composites.

India's market development is particularly focused on harsh climate applications, where extreme heat, monsoon conditions, and high humidity create challenging environments for traditional materials. The country's growing awareness of lifecycle cost benefits is driving adoption of basalt fiber products in critical infrastructure projects. Annual demand is projected to grow from 8,000 tons in 2025 to 18,000 tons by 2030, driven by highway

construction, urban metro systems, and coastal protection projects.

The "Make in India" initiative and increasing focus on supply chain independence are creating opportunities for domestic basalt fiber manufacturing, potentially reducing dependence on Chinese imports and creating regional supply hubs.


Japan: Premium applications

Japan is also a strong potential market, with its unique position as a seismically active nation driving specialized demand for basalt fiber in retrofitting and new construction. The country's focus on earthquake-resistant infrastructure, combined with an aging building stock requiring reinforcement, has created a niche but high-value market for advanced basalt fiber applications.

The market is characterized by premium pricing tolerance and emphasis on long-term performance over initial cost considerations. The country's stringent building codes and quality requirements create opportunities for high-performance basalt fiber products, particularly in seismic retrofitting applications where the material's flexibility and strength provide clear advantages.

The aging infrastructure challenge is particularly acute in Japan, with thousands of bridges and buildings constructed in the post-war boom period now requiring major rehabilitation. This creates sustained demand for structural reinforcement materials, with basalt fiber's lightweight properties and corrosion resistance providing significant advantages in renovation projects.

Basalt Fiber Market Dynamics in Asia Pacific

North America: Infrastructure renewal

North America is the second-largest market by region, with the United States accounting for approximately 40% of regional demand. The market is underlined by aging infrastructure requiring replacement, with more than 45,000 bridges rated as structurally deficient and thousands of miles of highway in need of rehabilitation.

United States: Massive infrastructure needs

The U.S. composite rebar market, which includes significant basalt fiber components, is projected to reach USD 198.2 million by 2030, growing at a CAGR of 6.1%. This growth is underpinned by federal infrastructure investment programs and state-level initiatives prioritizing long-term durability over initial cost considerations.

However, the U.S. market faces unique challenges related to supply chain diversification. While China remains a significant supplier through imports, trade tensions and "America First" policies are encouraging domestic production development. US and regional companies expanding capacity to serve domestic demand and reduce import dependence.

The Infrastructure Investment and Jobs Act provides substantial funding for infrastructure improvements, with specific emphasis on sustainable and durable materials. This creates structured demand for basalt fiber products, particularly in bridge rehabilitation, coastal protection, and transportation infrastructure projects.

State-level initiatives, particularly in coastal regions like California, Florida, and the Northeast, are driving adoption of corrosion-resistant materials. The economic impact of infrastructure corrosion (USD 276 billion annually) is creating strong incentives for sector.

Canada: Harsh climate Applications

Canada's market development focuses on harsh climate applications, where basalt fiber's thermal stability and freeze-thaw resistance provide clear advantages over traditional materials. The country's emphasis on sustainable construction practices, particularly in public projects, has created favorable conditions for basalt fiber adoption.

The oil and gas sector presents unique opportunities for basalt fiber applications, particularly in pipeline construction and processing facilities where chemical resistance and thermal stability are critical. Mining applications also show promise, with basalt fiber's resistance to abrasive environments and chemical exposure providing advantages in equipment and infrastructure.

Middle East & Africa: Emerging powerhouse

The MEA region is one of the fastest-growing markets, projected to expand from USD 40 million in 2024 to USD 200 million by 2035. This growth is driven by ambitious infrastructure projects and the region's harsh environmental conditions that accelerate traditional material degradation.

GCC Countries: Mega-Projects and extreme environment applications

Saudi Arabia's Vision 2030 and NEOM megaproject in addition to several others highlight the scale of opportunity. These developments require materials capable of withstanding extreme heat, sandstorms and periodic flooding while maintaining structural integrity for decades. Basalt fiber's thermal stability up to 800°C and superior corrosion resistance make it ideally suited for these conditions.

The UAE's infrastructure strategy, supported by the establishment of Arab Basalt Fibre Company's 5,000-ton annual capacity facility, positions the region for supply chain independence and export potential. The USD 2 billion industrial agreement between UAE, Egypt, Jordan and Bahrain specifically targets advanced materials adoption, creating structured demand for basalt fiber products.

Regional production capabilities are becoming increasingly important as megaprojects require reliable, local supply chains. The strategic location of Middle Eastern producers allows them to serve markets in Asia, Africa, and Europe while benefiting from competitive energy costs and access to raw materials.

MEA Growth Market Drivers

Industrial Agreement

Structured demand for basalt fiber products

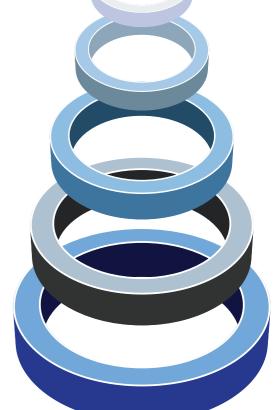
Supply Chain Independence

UAE's facility ensures regional autonomy

Basalt Fiber

Ideal material for extreme conditions

Environmental Conditions


Harsh conditions accelerating material degredation

Infrastructure Projects

Ambitious projects driving market expansion

5. Growth Drivers and Opportunities.

Beyond raw fiber to value-added applications.

A. Primary Growth Drivers 1. Increased Investment in Infrastructure:

The foundation for fabric and geogrid demand Global infrastructure investment is the fundamental growth driver for basalt fiber markets. The Asian Development Bank estimates developing Asia alone requires USD 1.7 trillion annually through 2030 to maintain growth momentum. This massive capital deployment creates structured demand for durable materials capable of extending asset life and reducing maintenance costs.

However, the real opportunity lies not in raw fiber consumption but in value-added products that serve specific infrastructure needs. Key investment programs driving growth include:

China's infrastructure strategy:

The Belt and Road Initiative encompasses projects across 65+ countries, many in harsh environmental conditions where basalt fiber's properties provide clear advantages. Domestic programs including the Yangtze River Economic Belt and Greater Bay Area development create additional demand for high-performance materials.

India's infrastructure pipeline:

The National Infrastructure Pipeline's USD 1.4 trillion target includes specific emphasis on sustainable materials. The Smart Cities Mission affects 100 cities, while the Bharatmala Pariyojana will develop 65,000 km of highways, creating massive demand for durable reinforcement materials. The highway development program specifically creates demand for basalt geogrids in road construction, with each kilometer of highway requiring approximately 2,000-3,000 square meters of geogrid reinforcement.

Middle East Mega-Projects:

Saudi Arabia's Vision 2030 includes NEOM and The Line projects requiring materials capable of withstanding extreme environmental conditions. The UAE's infrastructure development programs, supported by local production through ABFC, create both demand and supply advantages. NEOM's linear city design requires extensive soil stabilization and foundation reinforcement, creating demand for an estimated 50-100 million square meters of basalt geogrids over the project's construction period. The extreme heat conditions (up to 50°C) make basalt fiber's thermal stability crucial for fabric applications in building construction and infrastructure projects.

2. Electric Vehicle Revolution Driving fabric innovation and demand.

The automotive industry's transformation toward electric vehicles creates unprecedented demand for lightweight materials. Electric vehicles require 20-30% weight reduction compared to conventional vehicles to achieve acceptable range and performance.

Basalt fiber fabrics, specifically, enable this lightweighting while providing additional advantages that raw fiber cannot deliver:

Fire Safety:

Critical for battery enclosures and electrical components basalt fabrics provide superior fire resistance compared to conventional materials, with thermal stability up to 800°C essential for EV safety systems.

Electromagnetic Shielding:

Important for electronic systems integrity woven basalt fabrics offer excellent electromagnetic neutrality while maintaining structural strength.

Thermal Management:


Heat dissipation in high-power applications specialized basalt fabric weaves optimize heat transfer in battery cooling systems and power electronics.

Global electric vehicle sales projections indicate 30+ million units annually by 2030, creating massive demand for advanced composite materials. Each EV requires approximately 5-8 square meters of advanced fabric materials for battery enclosures, interior components, and thermal management systems. This translates to a potential market of 150-240 million square meters of basalt fabrics annually by 2030, representing a significant growth opportunity beyond traditional fiber applications.

Basalt Fiber Fabric Advantages

Thermal Management

Specialized basalt fabric weaves optimize heat transfer in battery cooling systems. This is important for heat dissipation in high-power applications.

Fire Safety

Basalt fabrics
offer superior fire
resistance compared to
conventional materials.
They provide thermal
stability up to 800°C
essential for EV safety.

Electromagnetic Shielding

Woven basalt fabrics offer excellent electromagnetic nuetrality while maintaining structural strength.

This is important for electric systems integrity.

3. Renewable Energy Focus

Wind energy development drives substantial basalt fiber demand, with offshore installations particularly important. The global offshore wind capacity is projected to reach 380 GW by 2030, up from 35 GW in 2020.

Offshore wind turbines face extreme conditions:

Saltwater Corrosion:

Traditional materials fail rapidly in marine environments basalt fabrics provide superior corrosion resistance in blade manufacturing and nacelle components.

Dynamic Loading:

Constant wind and wave action requires fatigue-resistant materials specialized basalt fabric weaves distribute loads more effectively than chopped fiber reinforcement.

Size Scaling:

Larger turbines demand materials with superior strength-to-weight ratios advanced basalt fabric lay-up techniques enable blade lengths exceeding 100 meters.

Basalt fiber addresses all these requirements while providing cost advantages over carbon fiber alternatives in large-scale applications. Wind turbine blade manufacturing specifically requires high-performance fabrics rather than raw fiber, with each modern offshore turbine utilizing approximately 200-300 square meters of advanced fabric materials. The projected 380 GW capacity translates to demand for approximately 15-20 million square meters of basalt fabrics annually in wind energy applications alone.

B. Technology-Driven Opportunities

1. Reducing the Cost of Manufacturing - Making fabrics and geogrids competitive

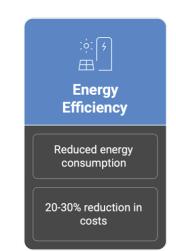
Technological advancement continues reducing basalt fiber production costs, expanding addressable markets. Key developments include:

Energy efficiency improvements:

Modern equipment reduces energy consumption by 300-700% compared to older installations, directly impacting production costs and environmental footprint. For fabric manufacturing, energy-efficient weaving and treatment processes reduce total production costs by 20-30%, making basalt fabrics more competitive with fiberglass alternatives.

Integrating automation and Al:

Advanced process control systems reduce labor costs while improving product consistency, making basalt fiber competitive in price-sensitive applications. Automated weaving systems for basalt fabrics enable 24/7 production with consistent quality, reducing labor costs by up to 40% compared to manual processes. Al-driven quality control systems detect defects in real-time reducing waste and improving final product reliability.


Economies of scale:

Larger production facilities achieve better economies of scale, with manufacturing plants exceeding 10,000 tons annually showing significant unit cost advantages. Integrated facilities combining fiber production with fabric weaving and geogrid manufacturing achieve 25-35% cost advantages through eliminated intermediate handling and transportation costs.

27

Global Research Report 2025 Global Research Report 2025

Cost Reduction for Basalt Fabrics

Impact

Fabric Manufacturing

2. Product Innovation - Creating new market opportunities

Innovation in basalt fiber products opens new application areas:

Hybrid composites:

Combining basalt with other fibers creates materials with tailored properties for specific applications. Basalt-carbon hybrids offer improved impact resistance, while basalt-glass combinations provide cost-effective performance enhancement. Hybrid fabric constructions, combining basalt with carbon or glass fibers in specific weave patterns, enable optimized performance for automotive and aerospace applications. These hybrid fabrics offer 80-90% of carbon fiber performance at 40-50% of the cost, creating new market opportunities in cost-sensitive applications.

3D printing applications:

Basalt fiber-reinforced printing filaments enable production of strong, lightweight parts for aerospace, automotive, and industrial applications. This emerging market could represent significant growth as additive manufacturing scales. Chopped basalt fiber incorporation into 3D printing filaments creates parts with 300-400% higher strength than unreinforced plastics, enabling new applications in tooling, prototyping, and enduse parts manufacturing.

Smart materials:

Research into basalt fiber-based sensor systems could enable structural health monitoring applications, adding significant value to traditional reinforcement functions. Smart geogrids incorporating embedded sensors enable real-time monitoring of soil movement and structural integrity, creating new applications in critical infrastructure monitoring. These systems add 200-300% value premium over conventional geogrids while providing continuous performance data.

3. Application Development - Expanding Beyond Construction

New application areas continue emerging as engineers better understand basalt fiber properties:

Marine infrastructure:

Offshore construction projects increasingly specify basalt materials for their saltwater corrosion resistance and durability. Marinegrade basalt fabrics for shipbuilding and offshore platform construction represent a growing niche market, with specialized weaves and treatments for underwater applications commanding premium pricing.

Seismic retrofitting:

Basalt fiber's strength and flexibility make it ideal for earthquake-resistant construction and retrofitting existing structures. Basalt fabric wrapping systems for column and beam reinforcement enable seismic upgrade of existing buildings, with each wrapped column requiring 10-15 square meters of specialized fabric. This application creates significant demand in seismically active regions.

Industrial equipment:

Chemical processing, mining, and other harsh industrial environments benefit from basalt fiber's chemical resistance and thermal stability. Industrial-grade basalt fabrics for equipment insulation and protection create niche but high-value opportunities. Chemical-resistant fabric systems for containment and protection applications command premium pricing due to their specialized performance requirements.

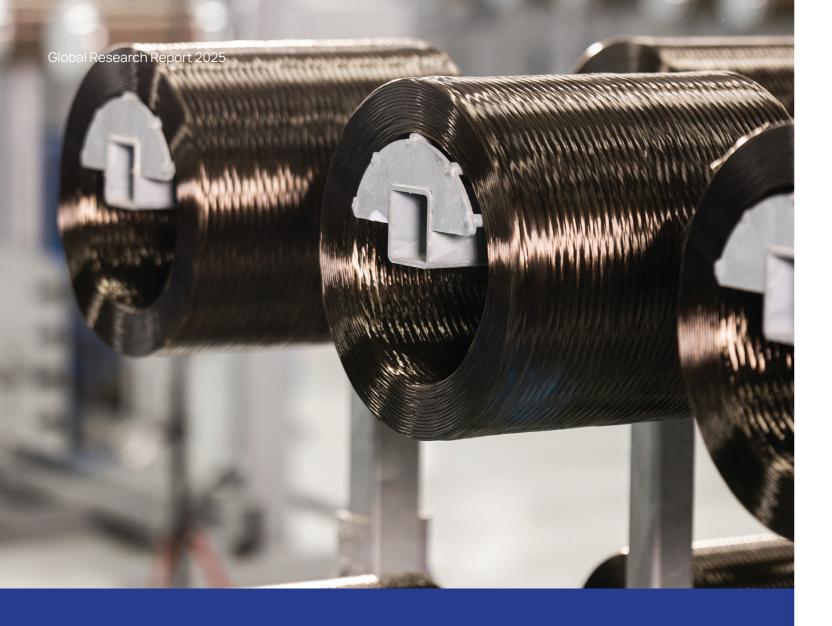
C. Opportunities for Market Expansion

Several regions that are yet untapped offer substantial growth potential, particularly for fabric and geogrid applications:

Latin America:

Infrastructure development in Brazil,
Mexico, and other major economies creates
opportunities for basalt fiber adoption. The
region's coastal exposure and seismic activity
in many areas favor corrosion-resistant and
flexible materials. Brazil's highway expansion
program requires approximately 100 million

square meters of geogrid reinforcement over the next decade, creating significant opportunities for basalt geogrid suppliers. Mexico's seismic retrofit programs drive demand for basalt fabrics in structural strengthening applications.


Africa:

Rapid urbanization and infrastructure development across the continent, combined with harsh environmental conditions, create favorable conditions for basalt fiber adoption. South Africa's mining industry offers particular opportunities for industrial applications. African road construction programs require an estimated 200-300 million square meters of geogrid reinforcement annually, with basalt geogrids offering superior performance in high-temperature conditions common across the continent. Mining applications create demand for specialized basalt fabrics in conveyor systems and equipment protection.

Southeast Asia:

Indonesia, Thailand, Vietnam and the Philippines offer significant untapped potential. These markets feature rapid infrastructure development, harsh climate conditions favoring durable materials, and growing manufacturing sectors. The region's extensive coastal development requires corrosion-resistant materials, with basalt fabrics and geogrids offering superior performance in high-humidity, salt-exposure conditions. Indonesia's massive infrastructure program alone requires an estimated 50-75 million square meters of geogrid reinforcement annually.

28 use parts manufacturing.

New Opportunities in Specialized Applications.

Advanced Geogrid Applications:

Next-generation geogrids incorporating smart sensing capabilities enable realtime monitoring of soil conditions and structural integrity. These smart geogrids command premium pricing (200-300% over conventional products) while creating new service revenue opportunities through monitoring and data analysis services.

Technical Fabric Innovation:

Development of basalt fabrics with specialized surface treatments and weave patterns for specific applications creates high-margin opportunities. Fire-resistant fabrics for aerospace interiors, chemicalresistant fabrics for industrial applications, and lightweight fabrics for automotive applications each represent distinct market segments with premium pricing potential.

Integrated Infrastructure Solutions:

Combining basalt geogrids with drainage systems, vegetation support, and monitoring capabilities creates comprehensive infrastructure solutions. These integrated systems capture higher margins while providing customers with complete solutions rather than individual components, creating competitive advantages and customer loyalty.

6. Challenges - Market realities for fabrics and geogrids development.

A. Production and Supply Chain Challenges.

The basalt fiber industry faces a fundamental challenge in raw material sourcing. While basalt rock is geologically abundant, deposits suitable for high-quality fiber production are limited and geographically concentrated. The specific chemical composition requirements – appropriate silica, alumina, and iron oxide levels with low alkali content – restrict viable quarry locations. This concentration creates several challenges:

Supply chain vulnerability:

Dependence on limited geographical sources creates risk from geopolitical events, trade disruptions, or local environmental regulations

Variation in quality:

Even within acceptable deposits, rock composition variations can affect melt characteristics and final fiber properties.

Transportation costs:

Distance from quarries to production

facilities impacts raw material costs and delivery reliability. For fabric and geogrid manufacturers, these raw material challenges are compounded by the need for consistent fiber quality. Variations in basalt rock composition can result in fiber diameter inconsistencies that affect weaving processes and final fabric properties. Geogrid manufacturing requires particularly uniform fiber characteristics to achieve consistent grid strength and dimensional stability.

Energy Intensity and Cost Pressures.

Basalt fiber production requires melting temperatures of 1,400-1,600°C, making it highly energy-intensive. Energy costs can represent 40-50% of total production costs, creating vulnerability to energy price volatility.

Regional energy cost differences also create competitive imbalances:

Europe and North America: Higher energy costs pressure margins and competitiveness

Middle East: Access to low-cost energy provides strategic advantages for producers like ABFC.

For fabric manufacturing, energy costs extend beyond fiber production to include weaving, heat-setting, and surface treatment processes. These additional energy-intensive steps can add 15-25% to total production costs, making fabric competitiveness even more sensitive to regional energy pricing. Geogrid manufacturing faces similar challenges, with coating and thermal treatment processes requiring significant energy inputs.

Equipment and Technology Barriers.

projects.

The specialized equipment required for basalt fiber production presents significant barriers: Capital intensity: Production facilities require investments of USD 50-100+ million for meaningful scale, limiting new entrant ability to compete effectively.

Technical complexity: Platinum-rhodium bushings and specialized furnace technology demand significant technical expertise and ongoing maintenance capabilities.

Equipment availability: Limited suppliers of specialized production equipment can create bottlenecks and delivery delays for expansion

Global Research Report 2025

B. Market development challenges.

Basalt fiber competes against wellestablished materials with mature supply chains and widespread acceptance:

Steel Reinforcement:

Despite corrosion issues, steel rebar benefits from:

- → Lower initial costs (though higher lifecycle costs)
- → Universal familiarity among engineers and contractors.
- →Established design codes and standards
- → Extensive manufacturing and distribution infrastructure.

Glass Fiber: E-glass fiber offers:

- → Lower production costs due to mature technology and scale
- → Extensive application development and proven performance
- → Broad supplier base and competitive pricing
- → Well-established processing techniques and equipment.

Fiberglass Fabrics and Geogrids:

The competitive challenge is particularly acute for basalt fabrics and geogrids:

- → Fiberglass fabrics: 30-40% lower cost with established weaving infrastructure
- → Fiberglass geogrids: Dominate 60-70% of geogrid market with proven performance
- → Extensive distributor networks and technical support.
- → Standardized specifications and testing protocols.
- → Strong relationships with engineering consultants and contractors

Carbon Fiber: For high-performance applications:

- → Superior mechanical properties in specific applications.
- → Extensive aerospace and automotive qualification.
- → Premium market positioning and customer acceptance.

Carbon Fiber Fabrics: In high-performance applications, carbon fiber fabrics offer:

- → Higher strength-to-weight ratios in critical applications.
- → Established qualification processes in aerospace and automotive
- → Premium pricing tolerance in high-value applications.
- → Extensive technical support and application development the need for consistent fiber quality. Variations in basalt rock composition can result in fiber diameter inconsistencies that affect weaving processes and final fabric properties. Geogrid manufacturing requires particularly uniform fiber characteristics to achieve consistent grid strength and dimensional stability.

Standards and Regulatory Challenges

Limited standardization creates market development barriers:

Design Standards:

Fewer established design codes for basalt fiber products compared to traditional materials create uncertainty for engineers and specifiers.

Testing Protocols:

Limited long-term performance data compared to materials with decades of field experience affects acceptance in critical applications.

Certification Processes:

New applications often require extensive testing and certification, creating delays and additional costs for market development.

Fabric-Specific Standards:

Basalt fabric applications face particular standardization challenges:

- →Lack of automotive industry specifications for basalt fabrics in crash worthiness applications.
- →Limited aerospace certification for basalt fabrics in interior and structural applications.
- → Absence of standardized testing protocols for basalt fabric-reinforced composites
- → Need for fire safety certifications specific to basalt fabric applications.

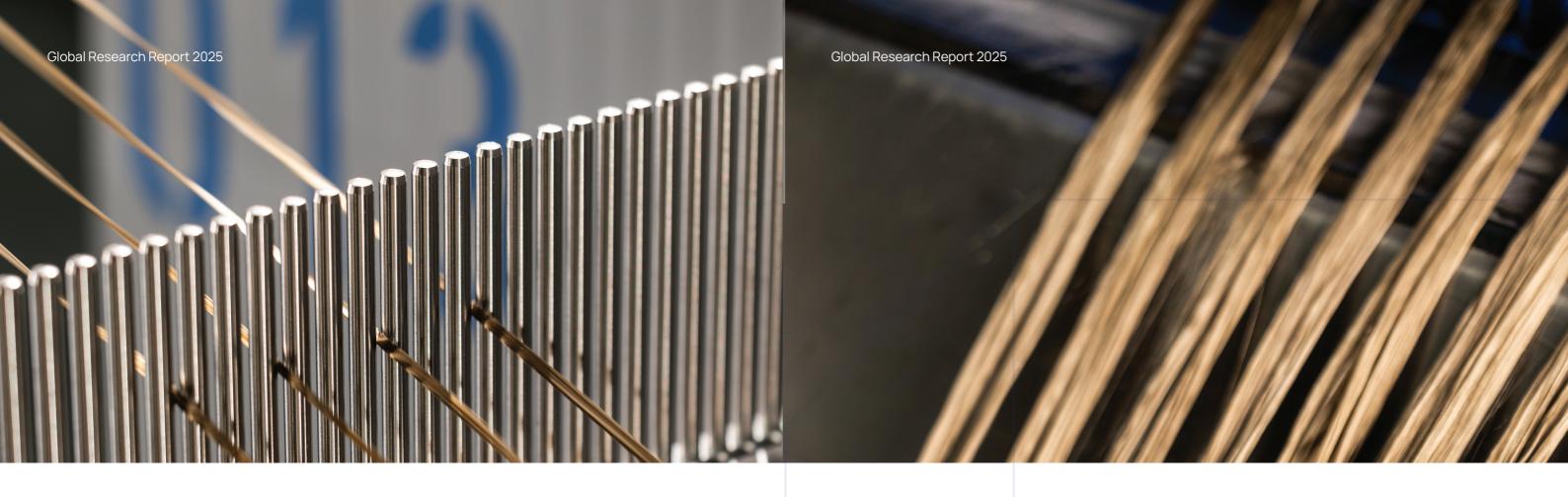
Geogrid Standards:

Geogrid applications face distinct regulatory hurdles:

- → Limited inclusion in highway department specifications for road construction
- → Absence of standardized installation procedures for basalt geogrids
- → Need for long-term creep and durability testing specific to basalt materials
- → Lack of established design guidelines for soil-geogrid interaction parameters

C. Economic and financial challenges

Basalt fiber typically costs 20-50% more than steel alternatives and remains more expensive than E-glass fiber, limiting adoption in price-sensitive markets. This premium reflects:


- → Higher production costs due to energy intensity and specialized equipment.
- →Limited production scale compared to established materials.
- → Premium positioning in many markets.

Value-Added Product Costs:

The cost challenge is compounded for fabrics and geogrids:

- →Basalt fabrics: 100-200% higher cost than fiberglass fabrics due to processing complexity.
- →Basalt geogrids: 50-100% premium over fiberglass geogrids despite performance advantages.
- → Limited economies of scale in downstream processing due to smaller market volumes.

32 / 33

Market volatility and demand uncertainty. The industry faces several sources of volatility:

Raw material cost: Energy price fluctuations directly impact production costs due to high energy intensity.

Demand fluctuations: Construction and infrastructure spending can be cyclical, affecting demand patterns.

Currency exchange fluctuation:

International trade in basalt fiber products creates exposure to currency fluctuations.

Financial and Investment Barriers

Working Capital Requirements:

Downstream processing creates additional financial challenges:

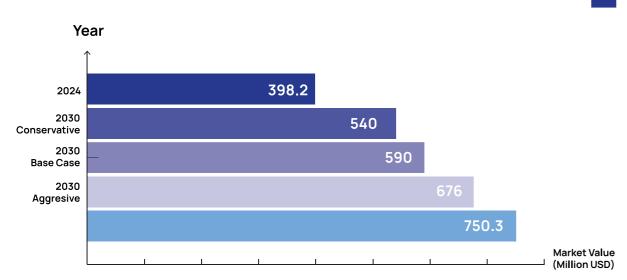
- → Higher inventory requirements for fabric and geogrid production due to longer processing times.
- → Extended payment terms often required for infrastructure projects using geogrids.

- →Need for technical service capabilities requiring ongoing investment in engineering support.
- → Quality guarantee commitments extending financial exposure beyond initial sale

Market Development Costs: Fabric and geogrid market development requires significant investment:

- → Extensive testing and certification costs for new applications.
- → Technical marketing and education programs for target industries.
- → Demonstration projects and pilot installations to prove performance.
- →Ongoing research and development for application-specific solutions.

7. Strategic Demand Projections 2025-2035:


Fabric and Geogrid Market Focus.

A. Global Market Growth -Beyond Raw Fiber to Value-Added Products.

Based on comprehensive analysis of market drivers, competitive dynamics, and technological developments, the global basalt fiber market is projected to experience robust growth throughout the 2025-2030 period. The market, valued at approximately USD 398.2 million in 2024, is forecasted to reach USD 750.3 million by 2033.

However, multiple analytical perspectives suggest varying growth scenarios:

- → Conservative projection: USD 540 million by 2030 (CAGR 8.5%).
- → Base case scenario: USD 590 million by 2030 (CAGR 9.8%).
- → **Aggressive growth**: USD 676 million by 2030 (CAGR 11.2%).

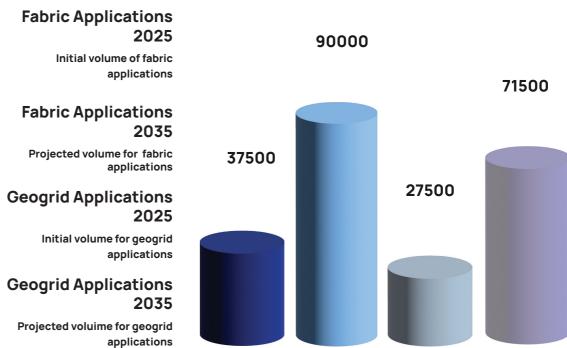
Projected Growth of Global Basalt Fibber Market

These projections reflect different assumptions about infrastructure spending, technology adoption rates, and competitive dynamics. The base case scenario appears most probable given current market trends and confirmed investment programs.

Value-Added Product Growth: While raw fiber growth faces constraints, fabric and geogrid segments show significantly higher growth potential:

- → Basalt Fabrics: USD 200 million (2023) to USD 450 million (2032), CAGR 9.2%
- → Basalt Geogrids: USD 411.7 million (2025) with 10.2% CAGR through 2033.
- → Combined fabric and geogrid value: Projected to represent 60-70% of total market value by 2030.

Volume Growth Analysis

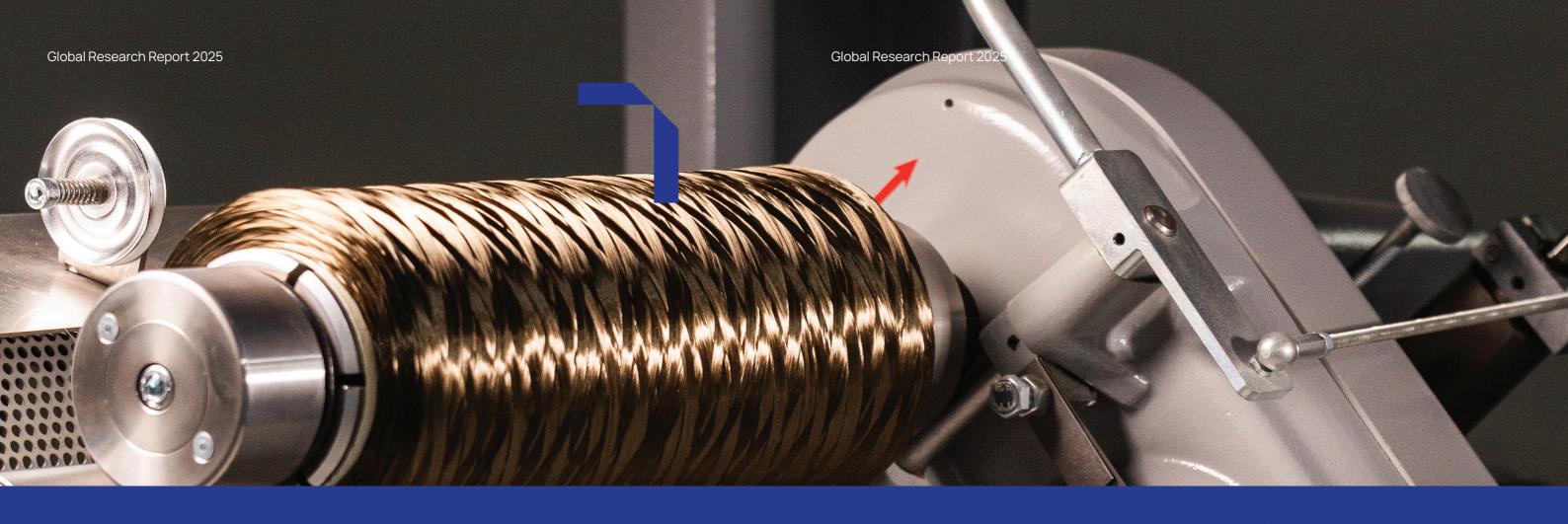

Market volume projections indicate growth from approximately 62.42 kilotons in 2025 to 105.80 kilotons by 2030, representing an 11.13% CAGR in physical volume terms. This volume growth slightly exceeding value growth suggests continued price pressure as technology advances and production scales

Product-Specific Volume Projections:

- → Fabric Applications: 35,000-40,000 tons (2025) to 85,000-95,000 tons (2035).
- → **Geogrid Applications**: 25,000-30,000 tons (2025) to 68,000-75,000 tons (2035).
- → Traditional Applications: Growth constrained by fiberglass competition and overcapacity.

Market Volume Projections by Application in tons

Regional volume distribution is expected to evolve:


- → Asia Pacific: 50-51% of global volume by 2030 (driven by infrastructure geogrids and automotive fabrics).
- → North America: 25-30% of global volume (automotive fabrics and infrastructure replacement).
- → Europe: 12-15% of global volume (wind energy fabrics and sustainable construction).
- → Middle East & Africa: 8-10% of global volume (mega-project geogrids and extreme environment fabrics).
- → Latin America: 3-5% of global volume (infrastructure geogrids and seismic retrofitting fabrics).

B. Sector-Specific Demand -Application-Driven Growth

Construction and Infrastructure -Geogrid-Led Growth.

The construction sector will maintain its position as the largest end-user, though its relative share may decline slightly as other sectors grow more rapidly. Projected sector growth patterns:

- →2025-2027: Steady growth driven by infrastructure replacement in developed markets and new construction in emerging economies. Expected annual growth rate of 8-10%.
- →2027-2030: Accelerated growth as major infrastructure programs reach peak construction phases. Programs like India's National Infrastructure Pipeline and Middle East mega-projects drive annual growth rates of 10-12%.

Key applications driving construction demand:

- → BFRP rebar: Expected to reach 35,000-40,000 tons annually by 2030.
- → **Structural reinforcement:** Growing retrofitting market adding 8,000-10,000 tons annually.
- → **Precast components:** Emerging applications adding 5,000-7,000 tons annually.

Geogrid Applications Leading Growth:

- → Road Construction: 15,000-20,000 tons annually by 2030 (highway expansion programs).
- → Soil Stabilization: 12,000-15,000 tons annually (urban development and megaprojects).
- → Underground Infrastructure: 8,000-10,000 tons annually (metro systems and tunnels).
- → Coastal Protection: 5,000-7,000 tons annually (seawalls and marine structures).

Automotive Sector - Fabric-Driven Transformation

Automotive applications are projected to show the highest growth rate, potentially reaching 15-18% CAGR through 2030. This growth is driven by:

Electric Vehicle Scaling: Global EV production projected to reach 30+ million units by 2030, with each vehicle using 15-25 kg of advanced composite materials on average.

Lightweighting Requirements: Automotive OEMs targeting 20-30% weight reduction to meet emissions standards and improve EV range.

Component Applications: Expanding use in:

- → Battery enclosures and thermal management (5,000-8,000 tons annually by 2030).
- →Body panels and structural components (8,000-12,000 tons annually)
- →Interior and trim applications (3,000-5,000 tons annually).

Fabric-Specific Applications:

- → EV Battery Enclosures: 150-240 million square meters of specialized fabrics by 2030
- → **Structural Panels:** 80-120 million square meters for lightweighting applications.
- → Interior Components: 50-80 million square meters for fire-resistant applications.
- → Thermal Management: 30-50 million square meters for heat dissipation systems.

Wind Energy - Fabric Applications in Offshore Expansion

Wind energy applications are projected to experience dramatic growth as renewable energy deployment accelerates. Key growth drivers include: Offshore wind expansion: Global offshore capacity projected to reach 380 GW by 2030, creating demand for 12,000-15,000 tons of basalt fiber annually in turbine blades.

Turbine size scaling: Larger turbines (15+ MW) requiring advanced materials for blade lengths exceeding 100 meters.

Blade retrofitting: Significant market developing for blade reinforcement and life extension services.

Fabric Applications in Wind Energy:

- → Turbine Blade Reinforcement: 15-20 million square meters annually by 2030.
- → Nacelle Components: 5-8 million square meters for corrosion-resistant applications.
- → Blade Retrofitting: 3-5 million square meters for service life extension.
- → Offshore Platforms: 2-3 million square meters for structural reinforcement.

Aerospace and Defense - Premium Fabric Applications.

While representing a smaller volume, aerospace applications command premium pricing and steady growth:

Commercial Aviation Recovery: Post-pandemic recovery driving aircraft production increases.

Defense Applications: Growing interest in basalt fiber for armor and protective systems

Space Applications: Emerging opportunities in satellite and launch vehicle components Aerospace Fabric Applications:

- → Aircraft Interiors: 2-3 million square meters annually by 2030.
- → **Structural Components**: 1-2 million square meters for lightweight applications.
- → Fire-Resistant Systems: 1-1.5 million square meters for safety-critical application.

C. Regional Demand Dynamics

Asia Pacific - Infrastructure and Manufacturing Hub

Asia Pacific will maintain its market leadership position through 2030, driven by:

China: Projected demand growth from 22,000 tons in 2025 to 35,000 tons by 2030

- →Infrastructure: Belt and Road Initiative projects.
- →Industrial: Manufacturing facility construction.
- → Transportation: High-speed rail and urban transit systems.

China Fabric and Geogrid Demand:

- → Highway Geogrids: 65,000 km annual expansion requiring 130-200 million square meters.
- → Urban Metro Fabrics: High-speed rail and metro systems requiring 20-30 million square meters.
- → Manufacturing Fabrics: Industrial facility construction demanding 15-25 million square meters.

India: Rapid demand acceleration from 8,000 tons in 2025 to 18,000 tons by 2030.

- → Smart Cities Mission: 100 cities undergoing infrastructure transformation.
- → **Highway Development:** 65,000 km of new highways under Bharatmala Pariyojana.
- → Industrial Growth: Manufacturing facility construction.

India Infrastructure Applications:

- → **Highway Geogrids:** 65,000 km requiring 130-195 million square meters over project period.
- → **Urban Development:** Smart Cities Mission requiring 50-75 million square meters of geogrids.
- → Seismic Retrofitting: Building reinforcement requiring 10-15 million square meters of fabrics.

Japan: Stable demand around 4,000-5,000 tons annually.

- → Seismic retrofitting of aging infrastructure
- → Advanced applications in automotive and electronics.

North America - Infrastructure Renewal and EV Manufacturing.

North American demand projected to grow from 15,000 tons in 2025 to 25,000 tons by 2030:

United States: Major growth driver with demand reaching 20,000+ tons by 2030

- → Bridge rehabilitation programs
- → Coastal infrastructure protection
- → EV manufacturing expansion US Market Applications:
- → Infrastructure Geogrids: 45,000+ bridges requiring 50-75 million square meters for rehabilitation.
- → EV Manufacturing: 30+ million vehicles requiring 150-240 million square meters of fabrics.
- → Coastal Protection: Seawalls and marine structures requiring 20-30 million square meters.

Canada: Steady growth to 4,000-5,000 tons annually.

- → Harsh environment applications.
- → Sustainable construction initiatives.

Middle East & Africa - Mega-Project Driven Growth.

The MEA region shows highest growth potential percentage-wise, with demand projected to reach 8,000-10,000 tons by 2030:

GCC Countries: Leading regional demand

- → **UAE**: 3,000-4,000 tons annually by 2030
- → Saudi Arabia: 2,500-3,500 tons annually
- → Qatar, Kuwait, others: 1,000-1,500 tons combined.

Middle East Mega-Project Applications:

- → NEOM Project: 50-100 million square meters of geogrids for soil stabilization.
- →The Line: 20-30 million square meters of fabrics for extreme environment construction.
- → **UAE Infrastructure**: 15-25 million square meters for coastal and desert applications.

North Africa: Growing infrastructure investment.

- \rightarrow Egypt: 800-1,200 tons annually by 2030.
- → Morocco: 400-600 tons annually.

Europe - Sustainability and Offshore Wind

European demand growth constrained by mature infrastructure but supported by sustainability initiatives:

- → **Germany:** Largest European market at 2,500-3,000 tons annually
- → Netherlands: Significant offshore wind applications.
- → Nordic Countries: Cold climate construction applications.

Global Research Report 20

European Application Focus:

- → **Offshore Wind:** 380 GW capacity requiring 15-20 million square meters of fabrics
- → Sustainable Construction: Green building requirements driving 10-15 million square meters demand.
- → Infrastructure Retrofitting: Aging infrastructure requiring 5-10 million square meters of fabrics.

D. Product Category Projections Value-Added Focus

Basalt Fabrics - The High-Growth Leader

Market Projections:

- → **2025**: 35,000-40,000 tons globally
- → **2030**: 58,000-65,000 tons globally
- → **2035**: 85,000-95,000 tons globally

Application Breakdown by 2030:

- → Automotive: 40% (EV applications driving growth)
- → Wind Energy: 25% (offshore expansion)
- → Aerospace: 15% (premium applications)
- → Construction: 20% (retrofitting and specialized applications)

Regional Distribution:

- → Asia-Pacific: 45% (automotive and infrastructure)
- → North America: 25% (EV manufacturing and aerospace)
- → Europe: 20% (wind energy and sustainability)

→ Middle East: 10% (extreme environment applications).

Basalt Geogrids - Infrastructure Growth Driver.

Market Projections:

- → 2025: 25,000-30,000 tons globally
- → 2030: 42,000-48,000 tons globally
- → 2035: 68,000-75,000 tons globally

Application Breakdown by 2030:

- → Road Construction: 40% (highway expansion programs).
- → **Soil Stabilization:** 30% (urban development and mega-projects).
- → Underground Infrastructure: 20% (metro systems and tunnels).
- → Coastal/Marine: 10% (specialized marine applications).

Regional Distribution:

- → Asia-Pacific: 50% (massive infrastructure programs).
- → North America: 20% (infrastructure renewal).
- → **Middle East**: 15% (mega-projects)
- → Europe: 10% (sustainable construction)
- → Latin America: 5% (emerging markets)

43

→2025: 22,000-25,000 tons globally

→2030: 30,000-35,000 tons globally

Applications concentrated in:

- →Concrete reinforcement and repair
- → Thermoplastic compounds
- → General composite applications

BFRP Rebar Products

BFRP rebar represents the fastest-growing product category:

- →2025: 18,000-20,000 tons globally
- →2030: 35,000-40,000 tons globally

Growth concentrated in infrastructureheavy regions with corrosive environments, particularly coastal and industrial areas. Strategic Reality: While

traditional applications

face overcapacity and price pressure, fabric and geogrid segments

offer genuine growth opportunities with

higher margins and clearer value propositions. Companies should prioritize investment in downstream

processing capabilities rather than raw fiber capacity expansion.

Traditional Applications - Constrained Growth.

Continuous Basalt Fiber

Continuous fiber will maintain dominance with 65-70% market share through 2030:

- → **2025**: 40,000-42,000 tons globally
- →2030: 70,000-75,000 tons globally

Growth driven by high-performance applications in automotive, wind energy, and aerospace sectors where continuous fiber's superior mechanical properties justify premium pricing.

Discrete/Chopped Basalt Fiber

Chopped fiber segment projected for steady growth:

7. Arab Basalt Fibre Company

Arab Basalt Fibre Company (ABFC)

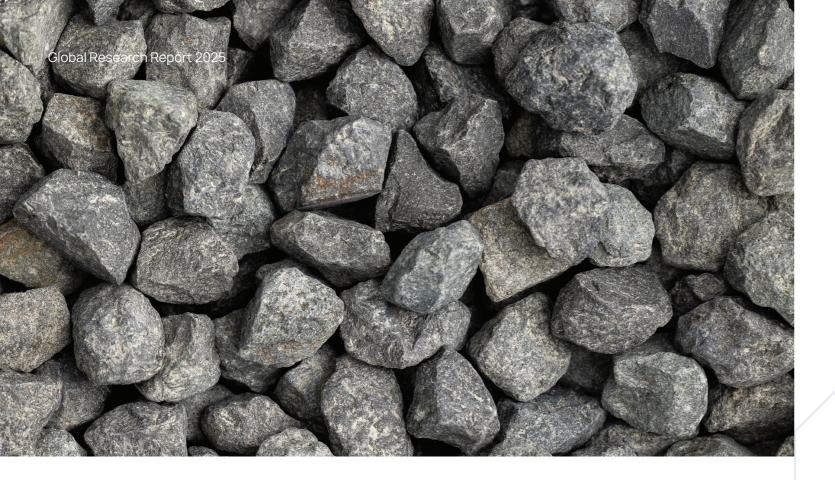
embodies a landmark
development in the
global basalt fiber
industry, establishing the
Middle East's first largescale production facility and
positioning the region as an
emerging hub for advanced

composite materials manufacturing.

More importantly, is pioneering the strategic shift from fiber production to high-

ABFC

value fabric and geogrid applications, recognizing that the future of the basalt fiber industry lies in downstream value-added products rather than commodity fiber production.


ABFC operates a state-of-the-art manufacturing facility in Fujairah, UAE, strategically located to leverage the emirate's substantial basalt rock deposits and excellent logistics infrastructure. The facility represents a USD 76 million investment in cuttingedge production technology

and represents the most advanced basalt fiber manufacturing operation in the Middle East.

The company's production projections indicate stable fiber capacity maintenance at 5,000 tons through 2026, with BFRP rebar production planned to expand to 7,000 tons by 2030. This strategic approach reflects market demand patterns and the company's focus on establishing strong market positions before capacity expansion.

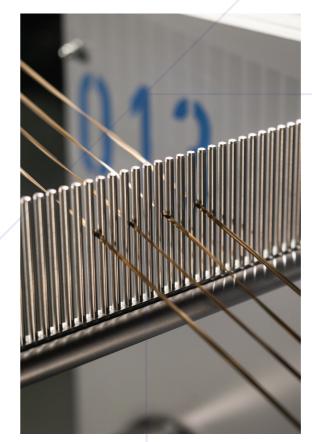
The company's strategic evolution reflects market realities: while maintaining stable raw fiber capacity at 5,000 tons through 2026, ABFC is prioritizing investment in downstream processing capabilities. The planned expansion includes:

- → Fabric Manufacturing: 2-3 million square meters annual capacity by 2027
- → **Geogrid Production:** 5-8 million square meters annual capacity by 2028
- → **BFRP Rebar:** Strategic focus on premium applications rather than volume expansion.
- → Integrated Solutions: Complete systems for automotive, infrastructure, and industrial applications.

Strategic Market Positioning for Fabric and Geogrid Leadership Product specifications:

- → Fiber Tensile Strength: 4,800 MPa (verified performance).
- → Heat Resistance: Up to 800°C operational temperature. → Rebar Diameter Range: 4mm to 32mm.
- → Quality Certifications: ISO 9001, 14001, and 45001 standards.

Advanced Product Development:


- → Automotive Fabrics: Fire-resistant weaves for EV battery enclosures
- → Infrastructure Geogrids: High-strength grids for mega-project applications
- → Marine-Grade Products: Saltwaterresistant fabrics and geogrids for coastal projects.
- → Smart Materials: Sensor-integrated fabrics and geogrids for monitoring applications

Strategic Advantages in the Value-Added Market.

ABFC's strategic positioning provides several competitive advantages that distinguish it in the global basalt fiber market:

Raw material security: The company's partnership with Arab Mining Company ensures access to high-quality basalt deposits in Fujairah, providing supply chain security and cost advantages. The local availability of suitable basalt rock eliminates transportation costs and supply chain vulnerabilities that affect many global competitors. This raw material security is particularly important for consistent fabric weaving and geogrid manufacturing, where fiber quality variations can significantly impact final product

performance.

Logistical ease: Fujairah's position as a major logistics hub provides ABFC with excellent access to global markets. The emirate's port facilities and strategic location between Europe, Asia, and Africa enable efficient distribution to key target markets. This positioning is crucial for fabric and geogrid exports, which require specialized packaging and handling compared to raw fiber shipments.

Energy advantages: Access to competitively priced energy in the UAE provides production cost benefits, particularly important given basalt fiber manufacturing's energy-intensive nature. This advantage helps ABFC compete effectively with producers in higher energy-cost regions. The energy advantage extends to downstream processing,

where fabric weaving and geogrid manufacturing require significant additional energy inputs for heating, treatment, and finishing processes.

Market-Focused Strategic Development

Target Market Alignment: ABFC's expansion strategy directly addresses the highest-growth market segments:

Middle East Mega-Projects:

- → NEOM's 50-100 million square meter geogrid requirement.
- → The Line's 20-30 million square meter fabric demand.
- → UAE's 15-25 million square meter coastal and desert applications.

Export Market Opportunities:

- → Asian infrastructure projects requiring 200-300 million square meters of geogrids annually.
- → European offshore wind sector demanding 15-20 million square meters of fabrics
- → North American EV manufacturing requiring 150-240 million square meters of fabrics.

Technology Leadership: Investment in advanced manufacturing capabilities:

- → Automated weaving systems reducing labor costs by 40%.
- → Smart geogrid production with embedded sensing capabilities.
- → Quality control systems ensuring consistent product performance.
- → Integrated testing facilities for customer application development.

10. Regional Strategic Alignment: UAE and MEA's Basalt Fiber Market Leadership.

The United Arab Emirates (UAE) and the broader Middle East & Africa (MEA) region are rapidly emerging as pivotal players in the global basalt fiber market, driven by ambitious development agendas and unique environmental challenges that create natural demand for advanced composite materials.

The MEA region represents one of the fastest-growing basalt fiber markets globally, projected to expand from USD 40 million in 2024 to USD 200 million by 2035. This exceptional growth trajectory directly aligns with the region's strategic development priorities:

Hey Growth Drivers:

- → Mega-Project Development: Saudi Arabia's Vision 2030 and NEOM megaproject require materials capable of withstanding extreme heat (up to 50°C), sandstorms, and periodic flooding.
- → Infrastructure Modernization: The UAE's infrastructure strategy emphasizes long-term durability and sustainability in construction materials.
- → Regional Cooperation: USD 2 billion industrial agreement between UAE, Egypt, Jordan, and Bahrain specifically targets advanced materials adoption.

Environmental Imperative: The region's harsh environmental conditions naturally accelerate traditional material degradation, creating compelling demand for basalt fiber's superior properties:

- → Thermal Stability: Up to 800°C operational temperature suits extreme desert conditions.
- → **Corrosion Resistance:** Critical for coastal structures and saline environments.
- → **Longevity:** 75-100 year service life reduces replacement needs in challenging climates.

ABFC's strategic role

Arab Basalt Fibre Company (ABFC) underlines the UAE's strategic approach to industrial diversification and advanced manufacturing leadership:

Production Capabilities:

- → State-of-the-art facility in Fujairah representing USD 76 million investment
- → Annual capacity: 5,000 tonnes basalt fibers, 7,000 tonnes BFRP rebars.
- → Regional first: Middle East's most advanced basalt fiber manufacturing operation.

Strategic Advantages:

- → Raw Material Security: Partnership with Arab Mining Company ensures access to local high-quality basalt deposits
- → Energy Cost Benefits: UAE's competitive energy pricing provides 25-30% cost advantage over European producers
- → **Logistics Hub:** Fujairah's strategic location enables efficient distribution to Asia, Africa, and Europe.

Market Positioning:

- → Supply Chain Independence: Reduces regional dependence on imports while creating export potential.
- → Technology Leadership: Most advanced production technology in the region.
- → **Sustainability Focus:** 74% lower carbon footprint compared to steel alternatives

The UAE's strategic positioning in the basalt fiber market demonstrates how regional development priorities, environmental challenges, and industrial diversification objectives can converge to create significant market opportunities. ABFC's emergence as a regional leader reflects this alignment, establishing the Middle East as a global center for advanced composite materials manufacturing while addressing local and regional infrastructure needs.

11.Conclusion

The global basalt fiber market is at a transformation point, with fabric and geogrid applications emerging as the true growth drivers while raw fiber production faces structural overcapacity.

The convergence of massive infrastructure programs requiring 200-300 million square meters of geogrids annually in Asia Pacific, electric vehicle manufacturing demanding 150-240 million square meters of fabrics in North America, offshore wind expansion requiring 15-20 million square meters of fabrics in Europe, and mega-projects needing 50-100 million square meters of geogrids in the Middle East creates unprecedented demand for specialized basalt fiber products.

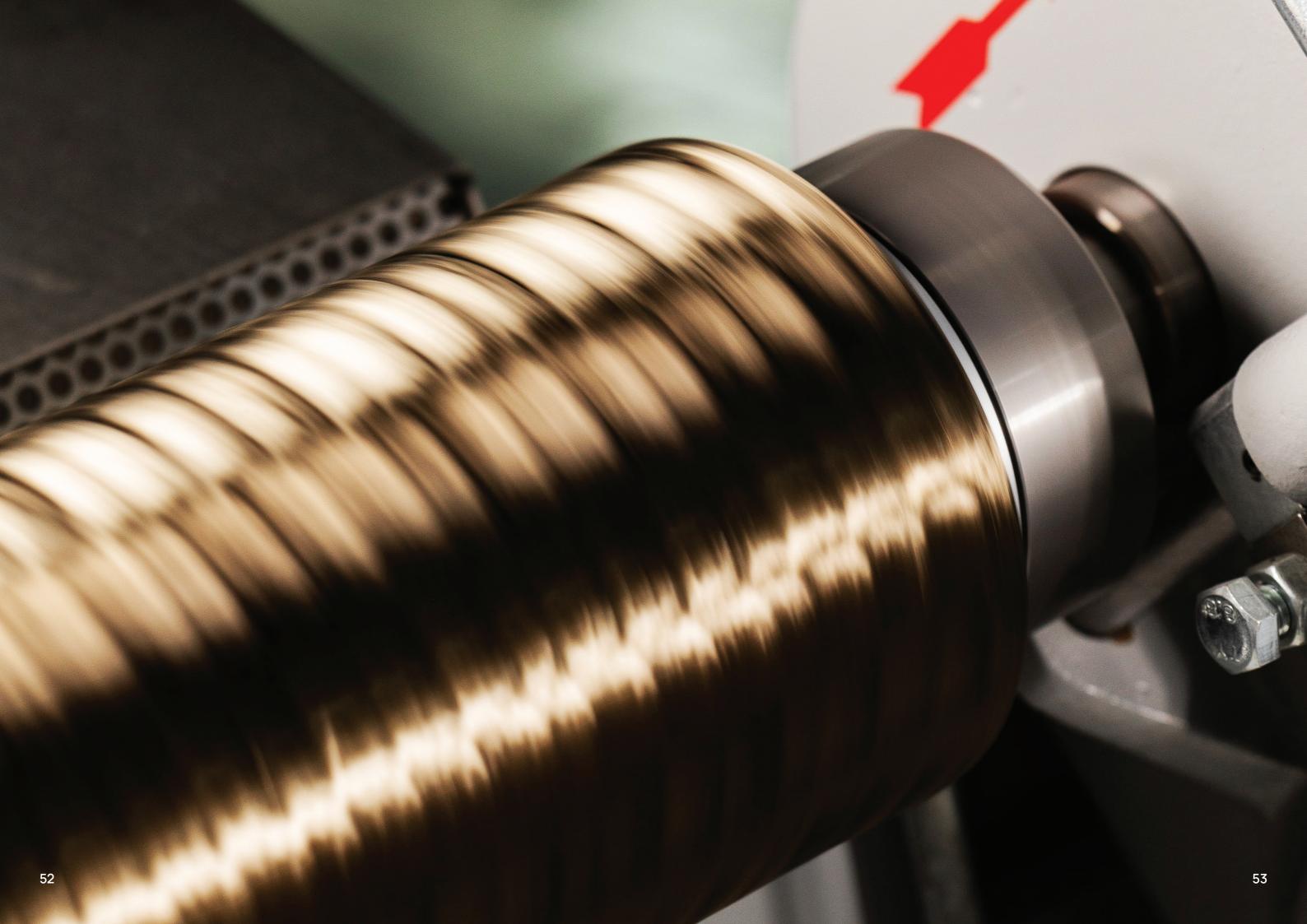
Combined with technological breakthroughs in automated weaving systems, smart geogrid manufacturing, and hybrid fabric development, the basalt fiber industry is entering its most promising growth phase, but only for companies that evolve beyond raw fiber production to value-added applications. The future belongs to fabrics and geogrids, not commodity fiber.

products.

As the market evolves toward 2030, success will favor companies that abandon raw fiber capacity expansion in favor of downstream processing investments. The winners will be those who master fabric weaving technologies, develop smart geogrid manufacturing capabilities, and build direct relationships with automotive OEMs, infrastructure contractors, and wind energy manufacturers.

demonstrates the strategic shift toward value-

added applications while positioning the Middle East as a global center for advanced basalt fiber


Raw fiber producers without downstream integration face margin compression and commodity pricing pressures. The basalt fiber story is ultimately one of advanced materials enabling breakthrough applications: fabrics that make electric vehicles safer through fireresistant battery enclosures, geogrids that extend highway life from 20 to 75 years, and smart materials that monitor infrastructure health in real-time. The industry's future is not in producing more raw fiber, but in creating intelligent, application-specific solutions that solve critical engineering challenges.

Companies must choose between the declining Arab Basalt Fibre Company's evolution raw fiber commodity business and the growing from raw fiber producer to fabric/geogrid opportunity. Our research integrated fabric and geogrid is clear: while raw fiber faces 16% global manufacturer exemplifies capacity utilization and price pressure from this transformation. fiberglass competition, fabric and geogrid ABFC's planned segments show 9-10% growth rates with investment in 2-3 million premium pricing. The transformation square meters of fabric window is now; any delay means being capacity and 5-8 left behind in a commodity trap while others capture the value-added future.

million square

meters of geogrid capacity by 2027-2028

Corporate Office, P.O. Box 9692 Arab Basalt Fiber Company Fujairah, United Arab Emirates